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Abstract 

The application of group theory to factor analysis of 
molecular geometry is discussed and illustrated with an 
examination of 211 distorted phosphate groups. 

Introduction 

In previous papers [Murray-Rust & Motherwell, 1978a 
(MMa), 1978b (MMb); Murray-Rust & Bland, 1978 
(MB)] we have described the application of fac- 
tor analysis (particularly the principal-components 
method) to molecular geometry. Specifically we showed 
how the multivariate distribution of torsion angles 
describing a nucleoside fragment could be analysed by 
this method. The procedure described in these papers 
is, however, only appropriate for molecular fragments 
which cannot show any symmetry or, put another way, 
can be given a unique labelling scheme for the atoms. 
In this paper the method is extended to cover 
configurations which are symmetrical or which show 
small distortions from a symmetrical structure (and 
therefore have an ambiguity in the atomic labelling). 

The multivariate distribution 

A multivariate distribution of m parameters p can be 
expressed by the equation: 

P(p) oc exp [-½(p - la) T A - ~ ( p -  g.)]. (1) 

Here P is the probability density at the point with 
coordinates p, ~. are the means of the parameters p, and 
A is the dispersion matrix (the matrix of variances and 
covariances). In our previous treatment we found it 
convenient to transform p values to z values (which 
have zero mean and unit variance) by a simple shift of 
origin and change of scale: 

z = ( p -  la)/o [i.e. Z i : ( f l i - - P i ) / t T t  ]" (2) 

The expression for the probability density then be- 
comes: 

P(z) oc exp [-½z T R-1 z] (3) 
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where R is the correlation matrix, with unities in the 
leading diagonal and Pearson correlation coefficients 
off the diagonal. If there are no missing observations in 
the data, R is Gramian (or semi-positive definite), i.e. 
all the eigenvalues are real and non-negative. The 
eigenvectors of R, weighted by the eignevalues, are the 
factors or principal components of the distribution: 

F --- ~1/2 E. (4) 

For a given probability distribution density Pi we can 
write: 

z r R -~ z = 2 In Pi + constant, (5) 

which is a standard quadratic form and represents the 
equation of a hyperellipsoid. For different P~ we can 
therefore draw hyperellipsoidal contours concentric 
about the mean of the distribution. 

In the treatment that follows, we shall assume that all 
distributions have the form of (1), although the use of z 
values and (3) may show simpler forms. In the general 
case where the centre of the distribution (~t) represents 
a configuration of atoms with no symmetry (as for the 
nucleosides) the derivation of factors is straight- 
forward and can be carried out with standard algo- 
rithms (e.g. SPSS). Where the mean Ix represents a 
configuration with higher symmetry than the con- 
figuration represented by any other point, group- 
theoretical considerations must be introduced into the 
factor analysis. These considerations are very similar to 
those involved in the analysis of molecular vibrations of 
symmetrical molecules and we shall assume familiarity 
with the application of group-theoretical methods as 
described in standard works (e.g. Wilson, Decius & 
Cross, 1955). The effect of symmetry on factor 
analysis is introduced by a two-dimensional (bivariate) 
example. 

A bivariate distribution with symmetry 

Consider a linear triatomic X Y X  fragment in different 
crystal or molecular environments (Fig. la). Each case 
is completely described by two parameters, r I and r 2, 
which in general will not be equal. Unless there has 
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been some system in labelling the molecule we cannot  
say a priori in any part icular  f ragment  whether rl or r 2 
is the longer. I f  a large number  of  cases were taken we 
would expect r ,  and r 2 to have identical distributions 
since there is no way  of  distinguishing between them. 
Al though there is no symmet ry  relating r,  and r 2 in any 
particular fragment ,  it is clear that  in general there is 
symmet ry  relating the distributions of  r ,  and r 2 and this 
is exemplified by Fig. l(b). In this figure the distri- 
bution is shown for a hypothetical  series of  X Y X  
molecules which are labelled at random.  Al though not 
precisely determined by symmet ry  the plot has an 
almost  exact  diagonal  mirror  line about  r,  = r 2. If  the 
distribution is unimodal  and conforms to (1), the mean 
will lie on the diagonal with r,  = r 2 = r 0 (say). 
Moreover ,  the dispersion matrix A must  have elements 
such that  the axes of  the distribution lie at ap- 
proximately  45 o to the parameters  r u 
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Fig. 1. (a) Parameters describing a linear X-Y-X fragment. (b) 
Hypothetical scattergram of r, and r 2 for a linear XYX fragment 
whose atoms have been randomly labelled 1 and 2 for each 
individual point. (c) Hypothetical scattergram of r, and r 2 for the 
same data as (b) but where the atoms have been relabelled so that 
r~ >_ r 2. Note that the distribution can be reflected about the line 
r, = r 2 and fills one asymmetric unit. Note also that the mean of 
the distribution shown is not on the diagonal line r~ = r 2 and 
that normality is not well obeyed for the points plotted. (d) 
Hypothetical scattergram of r i with r i using the same raw data as 
(b) and (c) where the atom labels have been permuted (i = 1, 

j = 2; i = 2,j  = 1). There are twice as many points plotted as in 
(b) and (c) and there is an exact line of symmetry along the 
diagonal. This diagram can be produced by reflecting either (b) 
or (c) about this line. 

When  this problem of  labelling arises there are three 
possible ways  of  proceeding. The first is simply to 
accept whatever  ( random) labelling is already on the 
molecule, or to label it at random.  In doing this we can 
expect near,  but not exact,  symmet ry  in the results of  
statistical analysis.  In more complicated systems it m a y  
be difficult to see whether this symmet ry  is co- 
incidental or arises from the intrinsic ways  of  labelling 
the molecule. A further d isadvantage  is that  two 
different workers  using different labelling may  produce 
slightly different answers f rom the same data.  The 
second possibility is that  of  using the observed 
geometry  of  each f ragment  to calculate a labelling 
scheme; thus for the X Y X  system we might a lways  call 
the longest X -  Y bond r,. The result o f  this is to produce 
a d iagram such as Fig. 1 (c) where all the points lie in 
one asymmetr ic  unit. I f  the distortion is normal  and 
few points border  the edge of  another  asymmetr ic  unit, 
this approach  is the most  appropriate ,  but where the 
distribution is similar to Fig. l(c) there are several 
disadvantages.  The symmet ry  of  the system is not 
explicitly considered and the distribution is most  
unlikely to be normal .  The mean of  the distribution will 
not  correspond to a symmetr ical  configuration and will 
give a false idea of  the most  favoured geometry.  
Moreover ,  in more  complicated systems it may  be 
impossible to produce a unique labelling scheme. In a 
te trahedral  molecule it might be reasonable  to label the 
a toms such that  r 1 < r 2 _< r 3 < r 4 or that  ct12 was the 
largest angle (etc.). In any part icular  molecule it is 
possible that  both of  these conditions cannot  be met 
and in general a sat isfactory unique labelling scheme is 
not available. 

The third approach  involves recognizing the labelling 
problem explicitly. For  the example given, Fig. 1 (b) or 
(c) can be reflected in the diagonal  mirror  line to give 
Fig. 1 (d), which has twice the number  of  points. Only if 
the resulting distribution is unimodal  is this method 
applicable. Obviously the mean of  the distribution must  
lie on r t = D* and the axes of  the distribution must  be at 
45 ° to the paramete r  axes. This application of  
symmet ry  can be described in two isomorphic ways.  
We can think of  a probabili ty distribution or scatter- 
g ram constructed from the original da ta  and subse- 
quently acted on by the operat ions of  an n-dimensional 
point group (usually n will be 2 or 3 but it could be 
higher). Alternatively we can apply the operat ions of  a 
permutat ion group (in this case $2) to the da ta  
immediately and construct  a sca t tergram or prob- 
ability distribution from the t ransformed data.  We shall 
show the formalism of  the permutat ional  approach  by 
considering the X Y X  example. 

* Subscripts 1, 2, 3 etc., are used when a molecule is uniquely 
labelled. When permutation operations have been applied the 
parameters will be called p;, Pi, etc., and i, j take a series of values 
for each molecule. 
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The dispersion matrix, A, for a normal bivariate 
distribution with m data for parameters Pl and P2 
(where pl and P2 are not potentially interchangeable, 
i.e. it is meaningless to permute their labels) has the 
form: 

A : I  a l l  a lq  (6) 

[.a21 a22_J 

where 

m 

at1 = Y (Plk -- #1) 2, 
k 

al2 = a21 = ~ (Plk -- gl) (P2k -- f12) 

and 

m 

a22 = ~ (P2k --/22) 2. (7) 
k 

The covariances a12 and a21 are always equal but in 
general the variances all and a22 are not. The 
eigenvectors of this matrix describe axes whose angles 
to the coordinate axes p~ and P2 are not determined by 
symmetry. If we apply the operations of the permu- 
tation group S 2 (i = 1,j  = 2; i = 2 , j  = 1) to the labels, 
the number of terms contributing to the variances and 
covariances is doubled. The new values are:~f 

2m 
a~ = Y (P lk -  gi) 2, (8) 

k 

2m 

a~ = Y (P tk -  g~) (P jk -  lUt) (9) 
k 

and 

1 2m 

lug'= 2m E (P,k)" (10) k 
We can then show by standard methods that the 
diagonalization of the new covariance matrix, A* is: 

aq 
a~ a~] 

__ V2 -112 --2-1121 Ia~tt+a~l 0 ,j] r 2-1/2 2-1121 
k 2-'/~ 2-u2J 0 a~ + a L-2 -1,2 2-1'2] 

(11) 
or  

A* = E *r Z* E* = (E *T ~,1/2) (~,v2 E*) = F *T F*. (12) 

I" All statistical quantities (including matrices) derived after the 
operation of a permutation group on the labelling will be marked 
with asterisks. (The transpose of a matrix M will be denoted by M r, 
its inverse by M-L) 

The eigenvectors now represent a pair of lines at 45 o to 
the parameter axes Pl and pj. The factors (F) are the 
major and minor axes of the elliptical distribution. 

[When z scores are used a false similarity to (11) and 
(12) can occur in the bivariate case. Even where the 
permutation operations do not apply the variances of 
both parameters are equal since they are normalized to 
unity. The eigenvectors of the correlation matrix must 
therefore be at 45 ° to zl and z 2. However, when the 
factors are retransformed by (2) the scales are affected 
differently and the false symmetry disappears from the 
distribution and scattergrams. In multivariate distri- 
butions of z scores there is normally no false 
symmetry.] 

The general problem is therefore to determine how 
the operation of permuting atom labels before comput- 
ing variances and covariances affects the symmetry of 
the eigenvector matrix E* and thus the orientation of 
the principal components. Fortunately the math- 
ematical treatment is isomorphic to the application 
of symmetry relationships to normal vibrations of 
molecules. 

Symmetry and normal vibrations 

At the level of the harmonic approximation the 
potential energy (V) of a molecule (relative to the 
equilibrium configuration) can be represented by the 
general quadratic form: 

2 V =  x T Bx. (13) 

Here B is a symmetric matrix of force constants,t and 
x is a vector representing the distortion of the molecule 
from its equilibrium geometry. Two-coordinate sys- 
tems are generally used for x: internal coordinates, d, 
corresponding to changes in bond lengths and angles, 
etc.; and symmetry coordinates, s, which are orthog- 
onal linear combinations of the d transforming as the 
irreducible representations (IR's) of G, the point group 
corresponding to the symmetry of the equilibrium 
configuration. An account of the use of symmetry 
coordinates in describing the geometry and energy of 
molecules distorted from a reference symmetry G is 
given in Murray-Rust, Bfirgi & Dunitz (1978a,b, 
1979) (MBDa,b,e). 

In the general valence force field the potential energy 
is represented by: 

2 V =  drKd  (14) 

where the matrix of force constants, K, contains 
interaction terms k 0 for every pair of parameters Pt and 
Pl, and for symmetrical molecules many of the k u will 
necessarily be identical. Thus in a tetrahedron the 

"l" The symbols used may be different from those in standard 
textbooks since otherwise there is confusion between factors and 
force constants, etc. 
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interaction constants k(rl,a12 ) and k(rt,a~s) will be the 
same and in fact there are twelve such equalities of this 
type; see Appendix. Where symmetry is present K can 
be factorized to give an alternative expression for the 
energy 

2 V =  s T K's (15) 

where K' has a blocked form, the blocks corre- 
sponding to IR's of G. (14) and (15) describe the same 
potential-energy function (with the same hyperellip- 
soidal contours) but referred to two different sets of 
orthogonal axes. These are related by a rotation matrix 
U: 

s = U d  (16) 

where the elements u 0 are partly, or sometimes 
completely, defined by the symmetry G. 

In general, therefore, the matrix of force constants 
K' can be diagonalized to give an equation of the form 
of (12), from which the eigenvectors can be uniquely 
determined. There is, however, a problem where the 
group G has high symmetry and some of the IR's are 
degenerate. Some of the eigenvalues are equal and there 
is some freedom in how the eigenvectors can be written. 
This can be seen in the different representations of 
normal coordinates used by different authors for the 
same normal mode. The problem is discussed in 
McDoweU (1965) and at length in MBDa, MBDc. For 
an n-tuply degenerate IR there are n - 1 rotational 
degrees of freedom in choosing the representation of 
the eigenvectors, and for some particular orientations 
of the vectors, the normal coordinate has higher 
molecular symmetry than in general. These higher 
symmetries are called cokernel symmetries for the 
particular IR. Thus the bond vibration of a regular 
tetrahedron transforming as T2 is described by some 
authors as a lengthening of two bonds and a shortening 
of the others (cokernel symmetry C2v) and by others as 
a lengthening of one bond and a shortening of the other 
three (cokernel symmetry C3v). These two descriptions 
simply correspond to a different choice of basis vectors 
and several other choices are also possible. In the 
present context we need simply note that the eigen- 
vectors for a degenerate IR can be chosen in different 
ways and an example of this is given in the Appendix. 

Symmetry and factor analysis 

Factor analysis of static distortions of a molecule from 
a symmetrical mean configuration follows in an 
isomorphic manner. The probability distribution can be 
represented either by valence parameters [cf. (14)]: 

- 2  In e(d) = dT(A*-t) d (17) 

or by symmetry coordinates: 

- 2  In P(s) = 'sT(C -~) s (18) 

where C has a blocked form exactly analogous to K' in 
(15). Its elements are the covariances between sym- 
metry coordinates s. In some cases the explicit use of 
(18) is useful and is exemplified by the description of a 
distorted tetrahedron in MBDb. Since (17) and (18) 
differ only in the choice of axes, eigenvectors and 
eigenvalues of A* will also show the symmetry required 
by G and (17) is often easier to use in practice. The 
symmetry of G is manifested in A* by label permu- 
tations which exactly parallel the equality of force 
constants in K (14). 

Factor analysis can be carried out with either A* or 
C or, more conveniently, the corresponding correlation 
matrices. If no representations are degenerate there 
will be a unique representation for each factor. Factors 
will occur in several blocks (if several IR's are involved) 
and the particular IR for each factor can easily be 
worked out by referring to character tables. The same 
principles apply when degenerate representations are 
involved, where factors occur in pairs (E) or triplets 
(T). The total variance due to a degenerate factor is 
found by summing the two or three equal eigenvalues. 
The form of the eigenvectors is indeterminate and if 
determined automatically will depend on the idio- 
syncrasy of the computer and its algorithm. By suitable 
choice of a rotation matrix the factors can always be 
rotated to give eigenvectors corresponding to cokernel 
symmetries (see Appendix). 

Even without the problems of cokernel symmetry, 
factor axes can now be rotated to simplify the 
coefficients in each factor (see MB and MMb) but this 
requires that rotation occurs only within blocks. The 
procedure cannot be carried out on A* and so C must 
be used instead, one block at a time. An example is 
given in the Appendix but the warning against carefree 
use of factor rotation (MB) is even more relevant to 
symmetrical matrices. 

The relationship of probability density and energy 

It has been suggested (Biirgi, Dunitz & Shelter, 1973; 
Biirgi, 1975; Dunitz, 1975; Murray-Rust, Bfirgi & 
Dunitz, 1975) that the probability distribution of 
geometrical parameters can give information about the 
potential-energy surface of a molecular fragment. Most 
relevantly, in MBDb it was shown that the symmetry 
properties of the probability distribution of bond 
lengths and angles of distorted tetrahedra were experi- 
mentally the same as those expected for the energy 
surface of a tetrahedral molecule. Here we shall merely 
note the very close mathematical relationship between 
probability and energy. 

The harmonic approximation to the potential energy 
of an isolated molecule is given by (14). At a 
temperature T an assemblage of molecules will classi- 
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cally have the potential energy distributed according to 
the Boltzmann distribution: 

P(V)  = A exp ( - V / k T ) ,  (19) 

where P(V) is the probability of finding the molecule 
with energy V and A is a normalizing constant. 
Substituting (14) in (19) we get 

P(V) = A exp (-½d T Kd/kT)  (20) 

or  

l n P ( V ) = l n A - d  r Kd/2kT. (21) 

This has exactly the form of the normal distribution (1) 
and if the classical approximation holds we should 
expect the geometries of gaseous molecules vibrating 
harmonically to be distributed as (20) at any instant in 
time. It is less clear whether the imposition of crystal 
packing forces in a random manner on a molecular 
fragment will necessarily give a normal distribution 
although there is evidence (MBDb) that this can 
happen. 

APPENDIX 

An example 

Table 1. Dispersion matrix A* for the geometrical 
parameters (lengths and angles) of  a tetrahedral M X  4 

molecule 

The lengths are labelled r I to r 4 and the angles 0112 to 0[34- There are 
seven distinct matrix elements for the variances and covariances. 
For the bond-length distortions we write: 

z ~ r  I : r I - -  r 0 

where r 0 is the mean bond length and for the angles we have: 

Aatj = a u - 109"47 °. 

Then for n observed tetrahedra: 

n n 

A = 6 Z Z Ar~, B = 4 Z Y  Z Aa~j, 
] i j > i  

n n 

C = 4 ~. ~- ~. Ar I Arj, D = 2 ~ ~ Y Ar I A0[lj, 
I j > l  l j ~ i  

n n 

E = 2 y y Z ~. Arl Aajk, F = 2 Z ~. • ~ Aau A0[Ik, 
l j k  l j k  

n 

G = 8 Y Z Y Aau ztakt 
I J ~ l  

represent the variance and covariance terms where the first 
summation is taken over the unique (i.e. unpermuted) data set. The 
dispersion matrix is symmetrical and here the lower triangle is 
shown: 

The distortions of tetrahedral molecules provide an 
excellent illustration of the factor analysis of a highly 
symmetrical distribution. The use of symmetry co- 
ordinates has been presented at length (MBDa, MBDb) 
and here we shall show how the same raw data used by 
MBD for distorted PO4 groups can be factor-analysed. 
The two approaches are complementary in that factor 
analysis shows clearly what proportion of the variance 
is attributable to any symmetry species but it does not 
detect deviations from normal distribution, either 
multimodality or non-linearity. 

The point group T a is isomorphic with the permu- 
tation group $4 (of order 24) which must be applied to 
the data before calculating the dispersion matrix A*. 
Thus instead of 211 data being used, 24 x 211 are 
used, corresponding to the permutations (i = l, j = 2, 
k = 3, l = 4), (i = 2, j  = 1, k = 3, l = 4) , . . .  etc., where 
i,j, k, I are the labels of the four O atoms. The formulae 
for calculation of the variances and covariances are 
given in Table 1. (In practice the permutations were 
applied to the bond lengths and angles and a set of 
5064 data was analysed by the normal method.) The 
corresponding correlation matrix, R*, is easily calcu- 
lated and given in Table 2 for the bond lengths and 
angles. It has, of course, the same symmetry as A*. 

The eigenvalues and eigenvectors of R* are given in 
Table 2 exactly as they came from the computer 
(SPSS  program running on an ICL 4130). One factor 
is identically zero, corresponding to the redundant A I 

r l  r2 ?'3 r4 a12 GI3 0~14 C~23 0[24 0~34 

r I A 
r 2 C A 

r 3 C C A 
r 4 C C C A 

a12 D D B B E 
0113 D E D E F B 
0114 D E E D F F B 
0[23 E D D E F F G B 
0[24 E D E D F G F F B 
a34 E E D D G F F F F B 

angle coordinate describing the non-independence of 
the six angles. The other nine factors can be seen to be 
made up of two different triply-degenerate factors (1-3, 
7-9), one doubly-degenerate factor (4-5) and one 
non-degenerate factor (6). These are identified by 
standard methods as: 

2 T 2 + E + A  ~. 

The second T2 factor (7-9) accounting for only 4% of 
the total variance is not experimentally significant and 
corresponds to errors of various sorts. The A 1 factor 
(6) is also very small and shows that the average bond 
length changes very little (see MBDb). By symmetry it 
cannot account for any angular variance. The E factor 
similarly cannot account for any variance in bond 
lengths but describes 17% of the angular variation. The 
eigenvectors have (coincidentally) come out in a simple 
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Table 2. Factor analysis of211 distorted phosphate (PO4)groups; data taken from Baur's (1974) compilation 

The following quantities were available for each case: bond lengths (r~), bond angles (all), and the average e.s.d, for bonds and angles 
(author's estimates), a(r) and a(a). 

(a) The following statistical quantities were derived: 

Mean s.d. Variance Mean e.s.d. (Mean e.s.d.) 2 

r t 1.537 A 0.042 A 0.0018 A 2 0.007 A 0.00005 A 2 
0"lj 109.35 ° 4.12 ° 17.0 (0)2 0.37 ° 0.14 (0)2 

(Note that the estimated variance only accounts for about 2-3% of the observed variance.) 

(b) The elements of the correlation matrix R* (formed after permuting all lengths and angles by the symmetry operations of S4). The 
symmetry of the matrix is given in Table 1 and the elements were found to be: 

A = B = 1; C = 0.27; D = -0 .47 ;  E = 0 .46 ;F  = --0.09; G = -0 .65 .  

(c) Eigenvalues and eigenvectors (for the first six eigenvalues only) of R*. The columns are as follows: the serial number of the eigenvalue; 
the IR Of T a appropriate to the eigenvector; the eigenvalue (;t); the percentage of total variance (PTV) explained by each factor; the 
cumulative percentage of total variance (CTV); the cumulative percentage of bond variance (CBV); the cumulative percentage of angle 
variance (CAV); the coefficients (x 100) of the bonds in each factor (r~); the coefficients (x 100) of the angles in each factor (ao). 

Factor IR 2 PTV 

1 T2 2.78 27.8 
2 T 2 2.78 27.8 
3 T 2 2.78 27.8 
4 E 0.52 5.2 
5 E 0.52 5.2 
6 A l 0.19 1.9 
7 7"2 0.13 1.3 
8 T 2 0.13 1.3 
9 7"2 0.13 1.3 

10 A l 0.00 0 

CTV CBV CAV 

83.6 89.8 79.6 

94.2 89.8 97.0 
96.1 94.4 97.0 

rl r2 r3 r4 0"!2 0"13 0"~4 0"23 0"24 0"34 

32 - 8 4  - 9  61 43 - 1 9  - 7 6  76 19 --43 
7 --43 87 - 5 0  29 - 7 6  36 - 3 6  76 - 2 9  

- 8 9  0 37 52 72 42 30 - 3 0  - 4 2  - 7 2  
0 0 0 0 40 - 3 0  - 1 0  - 1 0  - 3 0  40 
0 0 0 0 10 30 - 4 0  - 4 0  30 10 

-21  -21  -21  -21  0 0 0 0 0 0 

100.0 100.0 100 
100 100 100 

(d) Rotation 

Rotation matrix (elements x 100) 

of the first three factors (Tz) according to the varimax criterion 

I 85 21 

- 4 0  85 

- 3 4  - 4 7  

rl r2 r3 r4 0"12 

I_ 55 -55  -55  55 0 

55 - 5 5  55 - 5 5  0 

55 -55  55 55 89 

Rotated factors (x 100) 

Note that the factors now all show cokernel C2~ symmetry. 

(e) Rotation of factors 4-5 (E) to show cokernel symmetry 

Rotation matrix 

33 

81 

0"13 0"14 0"23 a24 0[34 

0 - - 8 9  89 0 00/ 

J - 8 9  0 0 89 

0 0 0 0 - 8 9  

I 2-v2 _2-v21 
2-1/2 2-1/2 ..] 

Rotated factors (x 100) 
0"12 0"13 0"/'14 0"23 0"24 0"34 

-21  42 -21  -21  42 -21  

Note that the second of the rotated factors shows the cokernel D2d symmetry, but that the first only shows D 2 (kernel) symmetry. 

form; they are both at 45 ° to a symmetry line in the 
deformation space. Rotation by 45 ° gives more 
symmetrical formulations for these two vectors, the 
second one of which now corresponds to a distortion 
with D2a symmetry, the cokernel of E(Ta). 

The T 2 factor is the most interesting in that it 
involves both bond and angle deformation and gives 
rise to the correlations found by MBDb between the 
two T 2 symmetry coordinates, $3 and $4. The 
eigenvectors initially showed no symmetry but after 
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rotation (in this case carried out by the Kaiser varimax 
procedure) the three eigenvectors all corresponded to 
distortions with C2v cokernel symmetry. The relation 
between bond and angle deformations is easily seen 
from the appropriate components of the factors. Thus 
as r~ and r 4 increase by 0.55 standard deviations 
(bond), r 2 and r a decrease by the same amount, oL14 
decreases by 0.89 standard deviations (angle) and a23 
increases by the same amount. Multiplying these 
quantities by the observed standard deviations (Table 
2a) we find that for a change of 1 o in a~4 there is a 
corresponding decrease in bond length r~ of 0.0063/~, 
very similar to the results of MBDb from correlation of 
symmetry coordinates. 

References 

BAUR, W. H. (1974). Acta Cryst. B30, 1195-1215. 
BORGI, H.-B. (1975). Angew. Chem. Ind. Ed. Engl. 14, 

460-473. 

Bi]RGI, H.-B., DUNITZ, J. D. & SHEFTER, E. (1973). J. Am. 
Chem. Soc. 95, 5066-5067. 

DUNITZ, J. D. (1975). Proc. R. Soc. London Ser. B, 272, 
99-108. 

McDOWELL, R. S. (1965). J. Mol. Spectrosc. 17, 365-367. 
MURRAY-RUST, P. & BLAND, R. (1978). Acta Cryst. B34, 

2527-2533. 
MURRAY-RUST, P., BORGI, H.-B. & DUNITZ, J. D. (1975). 3.. 

Am. Chem. Soc. 97, 921-922. 
MURRAY-RUST, P., BORGI, H.-B. & DUNITZ, J. D. (1978a). 

Acta Cryst. B34, 1787-1793. 
MURRAY-RUST, P., BORGI, H.-B. & DUNITZ, J. D. (1978b). 

Acta Cryst. B34, 1793-1803. 
MURRAY-RUST, P., BORGI, H.-B. & DUNITZ, J. D. (1979). 

A cta Cryst. A35, 703-713. 
MURRAY-RUST, P. & MOTHERWELL, W. D. S. (1978a). Acta 

Cryst. B34, 2518-2526. 
MURRAY-RUST, P. & MOTHERWELL, W. D. S. (1978b). Acta 

Cryst. B34, 2534-2546. 
WILSON, E. B., DECIUS, J. C. & CROSS, P. C. (1955). 

Molecular Vibrations. New York: McGraw-Hill. 

Acta Cryst. (1982). B38, 2771-2775 

Neutron Diffraction Study of the CrystaUographie and Magnetic Structures of 
Potassium Tribromoferrate(II) 

BY E. GUREWITZ 

Nuclear Research Centre-Negev, POB 9001, Beer Sheva 84190, Israel 

AND H. SHAKED 

Nuclear Research Centre-Negev, and Ben-Gurion University of  the Negev, POB 653, Beer Sheva 84120, 
Israel 

(Received 7 October 1981; accepted 9 February 1982) 

Abstract 

A neutron diffraction study of a powder sample of 
KFeBr 3 was carried out at various temperatures. 
(Weighted R factors are 0.076, 0.075 for 26, 31 
intensities measured at room temperature and liquid- 
helium temperature, respectively.) This compound was 
found to be isostructural with KFeC13 and belongs to 
the orthorhombic space group Pnma with four mole- 
cules per unit cell. It is paramagnetic at room 
temperature and undergoes a transition to a mag- 
netically ordered state at T N ~ 9.5 K. The magnetic 
structure as determined from diffraction patterns at 4.2 
K consists of antiferromagnetically coupled ferro- 
magnetic chains parallel to b. The antiferromagnetic 
axis is along b and the magnetic moment per FC + ion is 
3.7 + 0.2 BM (1 BM - 9.27 × 10 -24 J T-~). The tem- 
perature dependence of the magnetic reflections shows 

some residual coherent reflections above T N. This is 
interpreted in terms of strong one-dimensional intra- 
chain correlations. 

I. Introduction 

Most of the A B X  3 compounds, where A is an alkaline 
metal, B a transition metal and X a halogen or O, have 
crystallographic structures which are derived from 
either the ideal cubic perovskite or the hexagonal 
perovskite structures. However, some A B X  3 com- 
pounds have different structures. For example, the 
structure of KCdC13 (Wyckoff, 1964) cannot be 
obtained from the cubic or the hexagonal perovskite-like 
structures by a series of continuous distortions. 

The compounds KFeC13 and KFeBr a are iso- 
structural with KCdC1 a (Gurewitz, Makovsky & 
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